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Multicriteria Goal Games1
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Abstract. In this paper, we deal with multicriteria matrix games.
Different solution concepts have been proposed to cope with these
games. Recently, the concept of Pareto-optimal security strategy which
assures the property of security in the individual criteria against an
opponent's deviation in strategy has been introduced. However, the idea
of security behind this concept is based on expected values, so that this
security might be violated by mixed strategies when replications are not
allowed. To avoid this inconvenience, we propose in this paper a new
concept of solution for these games: the G-goal security strategy, which
includes as part of the solution the probability of obtaining prespecified
values in the payoff functions. Thus, attitude toward risk together with
payoff values are considered jointly in the solution analysis.
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1. Introduction

In this paper, we study two-person games with vector payoff, due to the
interesting applications in the analysis of conflict situations when multiple
objectives are involved. In fact, the extension of single-criterion games to the
multicriteria case provides more realistic models and permits more extensive
applications. In practical problems, it is usual that a player deals with not
only one criterion, but several criteria which he would like to satisfy. Besides,
any competitive situation that can be modeled as a scalar game can be
translated into a multicriteria game when more than one objective is present.
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For instance, the duopoly problem with two firms which provide the same
product is a two-person scalar game. However, if the two firms are producers
of two given homogeneous goods, the model becomes a two-person bicriteria
game.

Different solution concepts have been proposed for these games.
Shapley (Ref. 1) defined the concept of equilibrium points in games with
vector payoff and presented methods for obtaining them. More recently, a
similar approach has been adopted (Refs. 2 and 3) using the concept of
saddle point for vector-valued function and the notion of efficiency. The
interested reader can also see the multicriteria approach in N-person games
(Ref. 4) or in multicriteria N-person games under the paradigm of decision
dynamics (Ref. 5).

Equilibrium points, as a solution concept for multicriteria games, do
not possess the important property of security in the individual criteria
against opponent's deviation in strategy, unlike equilibrium saddle points
in scalar games. For this reason, Ghose and Prasad (Ref. 6) introduced the
concept of Pareto-optimal security strategies (POSS), which is independent
of the notion of equilibrium. In Ref. 7, the equivalence between POSS in
zero-sum multicriteria matrix games and efficient solutions of a particular
vector linear program was established. Multicriteria matrix games have also
been studied using as solution concept the Utopian-efficient strategy concept
(Ref. 8).

We consider a new approach to solve multicriteria games. We assume
that, relative to each objective, a goal has been specified by a player, and
this player wants to choose a strategy in order to get at least this goal in
each objective. Cook (Ref. 9) discusses a similar problem when the player
adopts the criterion of minimizing the total expected under achievement of
these goals.

We propose goal games, where we define the security level for one of
the players, as the probability that prespecified goals fixed by the player
might be achieved. Thus, as a part of the solution concept, we study not
only the payoff values, but also the probabilities to get them. With this
approach, the optimality of a strategy does not depend on the repetition of
the game, but it is given by the risk level that the player wants to assume.

A conflict arises immediately between using a pure strategy and using
a mixed strategy. The notion of a pure strategy is related to the security to
get fixed goals, and the notion of mixed strategy is related to probability
distributions. With our approach, a strategy will be chosen taking into
account the probability to achieve some goals depending on the player risk
position. That is to say, we consider strategies and the probabilities of obtain-
ing them, rather than the expected value given by the classical approach
(Refs. 6 and 7). In Ref. 10, using this new solution concept, two-person
nonzero sum games were analyzed as bicriteria goal games.



We analyze the problem under PI point of view.
Let GeR be a goal specified by PI. In order to determine the strategies

based on the probability to achieve the goal G, we formulate a zero-sum
game called matrix G-goal game.

Definition 2.1. The expected payoff of the matrix G-goal game, with
goal G and matrix A = (a i j), for each strategy pair X€X and ye Y, is

where

and v(x, y) is the probability to get at least G in the game when PI plays
strategy xeX and PII plays strategy ye Y.

The paper is organized as follows. In Section 2, we formulate and solve
the scalar matrix goal game. In Section 3, we generalize this formulation to
multicriteria goal games and we define G-goal security strategies. In Section
4, we develop a methodology to obtain these strategies by solving multi-
criteria linear programs. We prove that the set of these strategies for one of
the players coincides with the set of efficient solutions of a multiobjective
linear problem. In order to choose a specific strategy in this set, we propose
scalar problems associated with the multiobjective problem. Depending on
different ways to scalarize the multicriteria game, different efficient solutions
will be chosen. In Section 5, we carry out sensitivity analysis in the goals.
In addition, a partition on the space of the achievements in payoffs is
obtained. Three examples are included clarifying the results in the paper.

2. Matrix Goal Games

Let A = (a i j), 1 <i<n, 1 <j<m, be the payoff matrix of a two-person
zero-sum game. We denote by X and Y the set of mixed strategies for player
1 (PI) and player II (PII) respectively,
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As v(x, y) depends on the strategy that PII plays, we will consider this
probability in the worst case; i.e., we assume that PII will choose a strategy
ye Y that gives the minimum value of v(x, y). Then, for each xeX, PI will
get

Definition 2.2. The G-goal security level for PI of a matrix game with
matrix A = (aij) is the maximum probability that PI can guarantee to himself
for obtaining goal G, irrespective of the actions of PII. It is given by

Definition 2.3. A strategy xeX is a G-goal security strategy (GGSS)
for PI if v = minyey x'AGy, where v is the G-goal security level of the matrix
G-goal game.

The following result characterizes GGSS and gives a procedure to solve
matrix goal games.

Theorem 2.1. The G-goal security strategies and the maximum prob-
ability to obtain at least goal G are given by the solution of the two-person
zero-sum game whose payoff matrix is the matrix AG.

Proof. For x = (xt,x2,. ..,xn)eX and y = (yt,y2,.. .,ym)eY, the
expected payoff of the zero-sum game with payoff matrix AG is

For each i= 1 , . . . , n , let Yi be the sum of the y'js for the columns that have
an element equal to 1 in the ith row, i.e.,

The probability of obtaining at least goal G when the players use strategies
x and y, respectively, is
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Remark 2.1. If i exists such that pij= 1, for j= 1 , . . . , m, then using
the ith pure strategy of PI, the probability to get at least goal G is 1. If j
exists such that pij=0, for i= 1 , . . . , n , then the probability to get at least
goal G is 0, because the j th pure strategy of PII prevents the obtaining of
more than this value.

2.1. Decomposition of Goal Space. Previously, we have solved the
problem for a known goal G, but we can perform a global analysis when
we do not have any information about the goal G that PI wants to achieve.
The possible goals that PI can attain are included between the smallest and
the biggest element of the payoff matrix A. We call this segment the goal
space (GS).

The goal space (GS) can be decomposed into segments such that any
goal in a fixed segment can be attained with the same probability. For
determining these probabilities in each of these segments, we apply Theorem
2.1 in an orderly way, using sensitivity analysis in linear programming.

Suppose that the matrix A has r different elements. Let a1, a 2 , . . . , ar

be those elements ranked in increasing order. The different sets in the parti-
tion of the goal space are the segments

and the point a1.

2.2. Solution Procedure. We consider the matrix AG for goal G = ar;
then, we solve the two-person zero-sum game with payoff matrix AG. The
value of this game is the probability for PI of obtaining at least goal G in
the original game for any Ge(ar-1, a r ] .

In the following step, we consider the matrix AG for goal G = ar-1.
Using the information obtained in the above step (optimal basis), we solve
the two-person zero-sum game with this payoff matrix. The value of this
game is the probability for PI of obtaining at least goal G in the original
game for any Ge(a r_2 , a r - 1 ] . If we obtain the same solution as that in
the above step, then the two segments (ar-1, ar] and (ar-2, ar-1] may be
collapsed into only one, (ar-2, ar].

This procedure goes on until the first time that we obtain a matrix AG

with all the elements of a row equal to 1. If this happens for goal G = as,
then the probability to attain any goal G such that G < as is equal to 1.

The following algorithm gives those probability values.

Algorithm 2.1.

Step 1. Make all elements of AG equal to zero.



The probabilities to obtain goals belonging to each set and the corresponding
G-goal security strategy set are given in the table below, where ch{a, b} is
the convex hull of the vectors a, b and X is the mixed strategy space of
player I introduced in (1).

Segment

2
(2,4)
(4,7)

(7,8]
(8, 10]
(10,11)
(11,14)
(14, 15]

Probability

1
1
2/3

1/2
1/3
0
0
0

GGSS set

X
ch{(0,0, 1,0), (0,0,0, 1)}
ch{(l/3, 1/3, 1/3,0),
(1/3,0,1/3,1/3)}
{(0,0,1/2,1/2)}
{(0,1/3,1/3,1/3)}
X
X
X

The different sets in the partition of the goal space are

Step 2. Determine the position (i,j) corresponding to the biggest ele-
ment in the matrix A not considered yet. Put 1 in the position
(i,j) of matrix AG.

Step 3. Does Ac have any column with all elements equal to 0? If yes,
go to Step 2; if no, go to Step 4.

Step 4. Solve the zero-sum game with payoff matrix AG. Write down
the solution.

Step 5. Does AG have any row with all elements equal to 1? If yes, go
to Step 6; if no, go to Step 2.

Step 6. End.

With this procedure, we obtain the solution set for all possible goals
G, and PI will choose among them according to the risk that he wants to
take.

Example 2.1. Consider the two-person zero-sum game whose payoff
matrix is
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As we can see, PI will obtain goal G =7 with probability equal to 2/3,
Vxech{(l/3,1/3,1/3,0), (1/3,0,1/3,1/3)}, Vye Y. However, the probabil-
ity to get goal G=9 is equal to 1/3 for x = (0, 1/3, 1/3,1/3), Vye Y.

3. Multicriteria Goal Games: Model and Definitions

In this section, we extend the results obtained for the scalar game to
the multicriteria matrix game. See Refs. 6 and 7 for further details.

Let A = (aij) be the payoff matrix of a multicriteria zero-sum game, with
aij = (a i j(1), a i j(2) , . . . , aij(k))eRk, 1 <i<n, 1 <j<m, which leads to n x m
matrices

The mixed strategies spaces for PI and PII are, respectively,

Let G = (Gi,..., Gk) be a vector of goals specified by PI. Each component
of G is a goal for the corresponding scalar game.

Definition 3.1. The expected payoff of the goal game with goal G=
(G 1 , . . . ,Gk) and matrices A(s) = (aij(s)), s = 1 , . . . , k, for each strategy pair
xeX and ye Y, is

where

Every strategy xeX defines goal security levels for each scalar game
induced by the vector payoff game.

Definition 3.2. The G-goal security level vector for PI of a multicriteria
matrix G-goal game with goal G= (G1, , Gk) and matrices A(s) = (aij(s)),
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s = 1 , . . . , k, for each x e X , is

where

here, vs
c(x), s = 1 , . . . , k, is the probability to achieve at least Gs in each

scalar game when PI chooses strategy x.

Notice that, for a given strategy xeX, the security level vG
s(x), s =

1,. .., k, might be obtained from different strategies ye Y.
Now, we establish a new solution concept for vector payoff games,

based on goal security levels.

Definition 3.3. A strategy x*eX is a G-goal security strategy (GGSS)
for PI if there is no xeX such that vG(x*) <, v G ( x ) , V G ( X * ) * V G ( X ) .

As we have a multicriteria game, the solution concept is based on Pareto
optimality; i.e., any improvement of a component of vG(x*) can be achieved
only if another component gets worse values.

In order to obtain the whole set of GGSS, we propose a characterization
using multicriteria linear programming. To this end, in Section 4, we identify
GGSS with Pareto-emcient solutions of a particular multiple-objective linear
problem.

4. Determination of G-Goal Security Strategies

We consider the following multiple-objective linear problem, which we
call the G-goal game linear multicriteria problem:



the vector (v, x) is a feasible solution of (GLMP)G dominating (v*, x*); this
is a contradiction, because (v*, x*) is an efficient solution of (GLMP)G. D

The characterization given by Theorem 4.1 allows one to obtain all
GGSS solving the multiobjective problem (GLMP)G. Besides, we can con-
sider different scalarization methods for choosing one of them (Ref. 7).

Taking v = ( v 1 , . . . , vk), where

Conversely, suppose that an efficient solution (v*, x*) of (GLMP)G is not a
GGSS. Then, there exists xeX such that

and this problem is equivalent to

From (14), this is equivalent to

Theorem 4.1. A strategy x*eX is a GGSS and v* = (v1*,. . ., vk*) is its
(G-goal security level vector iff (v*, x*) is an efficient solution of problem
(GLMP).

Proof. Let x* be a GGSS. Then, there is no xeX such that
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Hence, x is an efficient solution of the problem
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(A) Firstly, we consider the scalarization given through weighting the
scalar linear problem P(A) associated with (GLMP)G,

The next result gives a characterization of GGSS as solutions of prob-
lem P(A).

Theorem 4.2. A strategy x* eX is a GGSS and v* = ( v 1 * , . . . , vk*) is its
G-goal security level vector iff exists A*eA° such that (v*, x*) is an optimal
solution of problem P(A).

Proof. This follows from the characterization of GGSS given in
Theorem 4.1 and the equivalence between efficient solutions of a multi-
objective linear problem and the solutions of the associated weighted-sum
problems. D

Each component A., of the parameter A = (A1 , . . ., Ak)eA° can be inter-
preted as the relative importance that PI assigns to the corresponding scalar
game with matrix A(s). Thus, if PI sets up fixed values for As, the objective
function of problem P(A) is perfectly determined. If PI chooses A s =G s ,
s = 1 , . . . , k, this function is the expected value of the goals Gs.

In this case, PI might choose a G-goal security strategy x* that gives
the biggest expected value, i.e., the optimal solution of the following scalar
linear problem:
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(B) We now consider the scalarization given through the weighted
maximin problem associated with (GLMP)G :

This problem can be written equivalently

The following theorem states that the solution of WMP(w) with o> 0
is both a necessary and sufficient condition for a strategy to be a GGSS for
PI.

Theorem 4.3. A strategy xeX is a GGSS for PI if and only if (v*, x*)
is an optimal solution to WMP(o) with oeW.

Proof. In Ref. 11, it is established that (v*, x*) is an efficient solution
to (GLMP) iff there is a o°e W such that (v*, x*) is an optimal solution to
WMP(o0); from Theorem 4.1, that is equivalent to a GGSS for PI. D

In this case, if PI chooses os = Gs, s = 1,. .., k, the optimal solution of
problem



The extreme efficient solutions are

and the G-goal security strategy set for PI is

In order to get all the G-goal security strategies for PI, we solve the following
linear multiobjective problem:

Let G = (3, 2) be a vector of goals fixed by PI. The matrices A G ( 1 ) and
AG (2) induced by goal G are

Example 4.1. Consider the following payoff matrix proposed in Ref.
12:

determines a G-goal security strategy that shares out the risk to obtain goals
Gs, s= 1,. .., k, among all them.
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5. Sensitivity Analysis in the Goals

In Section 4, we have obtained a G-goal security strategy and its G-
goal security level vector solving a multiobjective linear problem. Now, we
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The G-goal security strategy that gives the biggest expected value of goal G
is given by

the optimal solution of the following linear problem:

The GGSS that shares out the risk to obtain goals G = (3, 2) is

x= (11/25, 7/25, 7/25), v = (7/25, 11/25),

which is the optimal solution of the following linear problem:
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want to determine whether an efficient solution (v*, x*) for this problem
remains efficient after changing the goals Gs. When goal G is not known,
we will obtain the efficient solution set for any value of G. The set of all
possible goals that PI can attain in the game, called the goal space (GS),
can be decomposed into regions such that any goal within one of these
regions can be obtained with the same probability.

We consider two cases. In the first, we assume that the goals G =
(G, , . . . , Gk) increase to G' = (G'1,. . ., G'k); in the second we assume that
the goals G = (G1,. . ., Gk) decrease to G = ( G 1 , . . ., G'k).

(C1) If we increase each goal Gs to G's, s = 1,. .., k, the corresponding
matrix A G ( s ) induced by G's, s = 1,. . ., k, has more zero elements than the
matrix AG (s), s = 1 , . . ., k. For this reason, the feasible set of the new linear
problem (GLMP)G is smaller. Hence, if (v*, x*) remains feasible for the
problem associated to goals G', it will be efficient for that problem.

We consider the matrices

whose elements are

Theorem 5.1. Let (v*, x*) be an efficient solution of problem
(GLMP)y. If

where h j*(s),j = 1,. .., m, are the slack variables of the efficient solution in
problem (GLMP)G, then (v*, x*) is an efficient solution of problem
(GLMP)G.

Proof. We can express

A G ( s ) = A G ( s ) -M(s ) , s = 1 , . . . , k .

If (v*, x*) is an efficient solution of problem (GLMP)G, then



which implies that (v*, x*) is an efficient solution of problem (GLMP)C .
D

(C2) We now suppose that the goals Gs, s = 1, . . . , k, decrease to the
new values G ' s , s=1 , . . . ,k. In this case, the corresponding matrix A G ( s )
induced by G's, s= 1 , . . . , k, has more elements equal to 1 than the matrix
A G ( s ) , s= 1 , . . . , k. Then, the feasible set of the new problem increases. For
this reason, if (v*, x*) is an efficient solution for the problem with goals Gs,
it will remain a feasible solution for the problem with goals G's, but may
not be an efficient solution. To check if (v*, x*) is an efficient solution for
the new problem, subproblem testing can be used.

Let AG'(s) be the matrix induced by G's,s =1,. .. ,k. The new problem
is

and

which means that

these expressions can be rewritten as

where

Because we assume by hypothesis that
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We can express

where M(s) = (m i j(s)) is a matrix whose elements are

Problem (29) can be written as

Theorem 5.2. Let (u*, x*) be an efficient solution of problem
(GLMP)c. If the scalar linear problem

has an optimal value equal to zero, then (u*, x*) is an efficient solution for
(GLMP)G.

Proof. If the optimal objective function value is zero, then ti = 0,
Vi= 1 , . . . , k. Using subproblem testing for efficient points (see Ref. 13),
this means that solution (v*, x*) cannot be improved. D

On the other hand, we can obtain the efficient solution set of problem
(GLMP)C for any possible goal G in the goal space. For determining these
sets, we apply Theorem 4.1 in an orderly way for all goals. Using the infor-
mation obtained in each step (efficient basis), we can develop an iterative
method in order to get the efficient solutions of the new problem.



6. Conclusions

A new solution concept has been introduced for both scalar and multi-
criteria matrix games. This concept is based on two basic rationality prin-
ciples : (i) security in the individual criteria against opponent's deviation in
strategy; and (ii) measurability of the risk attitude in mixed strategies when
replications are not allowed. Using prespecified goals for criteria, we consider

Notice that these regions correspond to rectangles, segments, and one point.
We denote by S(i,j) the efficient solution set of problem (GLMP)G for any
goal GeRji, i,j= 1, 2, 3. In our example, these sets are

Similarly to the scalar game, we consider the different elements of the
matrices A(1) and A(2) ranked in increasing order. Therefore, the different
regions in the partition of the goal space are

Example 5.1. Consider the payoff matrix of Example 4.1. The goal
space for this game is
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as solution not only the strategy played by the player, but also the probability
of obtaining at least such goal values. Therefore, this concept permits the
players to measure their attitude towards risk by means of the probability
that they have for obtaining the different outcomes of the games.

This approach can be viewed as a refinement of the concept of Pareto-
optimal security strategy; see Refs. 6, 7, 14. This extension consists of adding
information about the probabilities of different outcomes to the idea of
security behind any Pareto-optimal security strategy.

A methodology to obtain the whole set of GGSS is developed. We have
shown that all these strategies, together with their associated probabilities,
can be obtained as Pareto-efficient solutions of a particular multiobjective
linear problem.

Finally, we want to point out that these concepts can be applied beyond
this framework. In fact, they have been used to develop a new solution
concept for two-person nonzero-sum games. It consists of considering any
bimatrix game as a bicriteria matrix game and then applying the approach
presented in this paper. More details on this subject can be found in Ref.
10.
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